
International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017
ISSN 2229-5518

A Convex Hull Algorithm using Point Elimination
Technique

Dr. Sajjad Waheed, Tahmina Shirin, Md. Newaz Sharif, Md. Habibur Rahaman

Abstract— Graham’s scan is an algorithm for computing the convex hull of a finite set of points in the 2D plane with time complexity
O(nlogn). In the algorithm, points in 2D plane are sorted angle-wise and then selected as convex hull points by checking whether the points
constitute right-turn or left-turn. A preprocessing technique on Graham’s Scan algorithm has developed in this paper. First, the number of
points was eliminated those are not exist on the hull. To do this, a quadrilateral was created using four optimal points and then create four
triangles using another four optimal points. Thus the complexity of the algorithm O(nlogn) is expected to work much faster on smaller
number of points.

Index Terms— - Convex Hull, Point elimination, Graham’s scan algorithm, Point in 2D plane.

—————————— ——————————

1 INTRODUCTION
N object is convex in Euclidean space, if for every pair of
points within the object, every point on the straight line

segment that joins the pair of points is also within the object.
Let S be a vector space over the real numbers, or, more gener-
ally, some ordered field. This includes Euclidean spaces. A set
C in S is said to be convex if every point on the line segment
connecting x and y is in C.

A

A convex polygon is a simple polygon whose interior is a con-
vex set. The properties of a simple polygon are all equivalent
to convexity, and can be stated as (i) Every internal angle is
less than or equal to 180 degrees, and (ii) Every line segment
between two vertices remains inside or on the boundary of the
polygon.
A simple polygon is strictly convex if every internal angle is
strictly less than 180 degrees. Equivalently, a polygon is
strictly convex if every line segment between two non-adja-
cent vertices of the polygon is strictly interior to the polygon
except at its endpoints.
In mathematics, the convex hull or convex envelope of a set X
of points in the Euclidean plane or Euclidean space is the
smallest convex set that contains X. For instance, when X is a
bounded subset of the plane, the convex hull may be visual-
ized as the shape formed by a rubber band stretched around
X.
Formally, the convex hull may be defined as the intersection of
all convex sets containing X or as the set of all convex combi-
nations of points in X. With the later definition, convex hulls
may be extended from Euclidean spaces to arbitrary real vec-
tor spaces; they may also be generalized further, to oriented
matroids.

2 LITERATURE SERVEY

Per-Olof Fjällström, Jyrki Katajainen, Christos Levcopoulos,
Ola Petersson [27] presented a parallel algorithm for finding
the convex hull of a sorted set of points in the plane.Their al-
gorithm runs in O(logn/log logn) time using O(nlog
logn/logn) processors in the Common crcw pram computa-
tional model, which is shown to be time and cost optimal. The
algorithm is based on n 1/3 divide-and-conquer and uses a
simple pointer-based data structure.

Kasun Ranga Wijeweera [28] proposed a new efficient algo-
rithm to construct the convex hull of a set of points in the
plane. The proposed algorithm is able to find the points on the
convex hull in boundary traversal order. When the convex
hull has collinear points, the algorithm can detect all the
collinear points on the hull without skipping the intermediate
points. Furthermore it can deal with the data sets were coinci-
dent points appear. Two main methods have been used to
make the algorithm efficient. First one is achieving parallelism
which is done by partitioning the data set. Second one is data
reduction which is done by removing unnecessary points at
each step of processing.

Mart M.McQUEEN and Godfried T. TOUSSIANT proposed e
modification of Kirkpatrick and Seidel‘s algorithm. Kirk-
patrick and Seidel’s algorithm is capable of computing convex
hull of n points in O(nlogh) worst case time, where h denotes
the number of points on the convex hull of the set. But M.Mc-
QUEEN and Godfried T. TOUSSIANT’s [03] algorithm is be-
lieved to run in O(n) expected time for many reasonable distri-
butions of points.

Herv´e Br¨onnimann, John Iacono, Jyrki Katajainen, Pat Morin,
Jason Morrison, Godfried Toussaint proposed a space-efficient
algorithm in which the output is given in the same location as
the input and only a small amount of additional memory is
used by the algorithm.They described four space-efficient al-
gorithms for computing the convex hull of a planar point set.

Gang Mei, John C.Tipper and Nengxiong Xu [29] represent an
alternate choice to compute the convex hull for planar point
sets. At first they discard the interior points and then sort the
remaining vertices by x and y coordinates separately. Then
create a group of quadrilaterals recursively according to the
sequence of sorted lists of points. Finally, the desired convex
hull is built based on a simple polygon derived from all
quadrilaterals.

1. C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa’s
method:

IJSER © 2017
http://www.ijser.org

1410

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017
ISSN 2229-5518

This algorithm is a practical convex hull algorithm that com-
bines the two-dimensional Quickhull Algorithm with the gen-
eral-dimension Beneath-Beyond Algorithm. It is similar to the
randomized, incremental algorithms for convex hull and De-
launay triangulation. They provide empirical evidence that the
algorithm runs faster when the input contains non extreme
points and that it uses less memory. Computational geometry
algorithms have traditionally assumed that input sets are well
behaved. When an algorithm is implemented with floating-
point arithmetic, this assumption can lead to serious errors.
They briefly describe a solution to this problem when comput-
ing the convex hull in two, three, or four dimensions. The out-
put is a set of “thick” facets that contain all possible exact con-
vex hulls of the input. A variation is effective in five or more
dimensions.

2. Per-Olof Fjällström, Jyrki Katajainen, Christos Levcopoulos, Ola
Petersson’s method:
They presented a parallel algorithm for finding the convex
hull of a sorted set of points in the plane.Their algorithm runs
in O(logn/log logn) time using O(nlog logn/logn) processors
in theCommon crcw pram computational model, which is
shown to be time and cost optimal. The algorithm is based on
n 1/3 divide-and-conquer and uses a simple pointer-based
data structure.

3. Kasun Ranga Wijeweera’s method:
Kasun Ranga Wijeweera proposed a new efficient algorithm to
construct the convex hull of a set of points in the plane. The
proposed algorithm is able to find the points on the convex
hull in boundary traversal order. When the convex hull has
collinear points, the algorithm can detect all the collinear
points on the hull without skipping the intermediate points.
Furthermore it can deal with the data sets where coincident
points appear. Two main methods have been used to make the
algorithm efficient. First one is achieving parallelism which is
done by partitioning the data set. Second one is data reduction
which is done by removing unnecessary points at each step of
processing.

4. Mart M.McQUEEN and Godfried T. TOUSSIANT’s method:
Mart M.McQUEEN and Godfried T. TOUSSIANT proposed a
modification of Kirkpatrick and Seidel‘s algorithm. Kirk-
patrick and Seidel’s algorithm is capable of computing convex
hull of n points in O(nlogh) worst case time, where h denotes
the number of points on the convex hull of the set .But M.Mc-
QUEEN and Godfried T. TOUSSIANT’s algorithm is believed
to run in O(n) expected time for many reasonable distributions
of points.

5. Herv´e Br¨onnimann, John Iacono, Jyrki Katajainen, Pat Morin,
Jason Morrison, Godfried Toussaint’s method:

Herv´e Br¨onnimann, John Iacono, Jyrki Katajainen, Pat Morin,
Jason Morrison, Godfried Toussaint proposed a space-efficient
algorithm in which the output is given in the same location
as the input and only a small amount of additional memory is
used by the algorithm.They described four space-efficient al-
gorithms for computing the convex hull of a planarpoint set.

6. Gang Mei, John C.Tipper and Nengxiong Xu’s method:
Gang Mei, John C.Tipper and Nengxiong Xu represent an al-
ternate choice to compute the convex hull for planar point
sets. At first they discard the interior points and then sort the
remaining vertices by x and y coordinates separately. Then
create a group of quadrilaterals recursively according to the
sequence of sorted lists of points. Finally, the desired convex
hull is built based on a simple polygon derived from all
quadrilaterals.

3 PROPOSED METHOD

To determine the convex hull of a given problem set, at first to
minimize the points from which the convex hull is found. A
huge number of points have removed and then the process
will be faster. A large number of points was removed from the
given problem set, which are not definitely hull points. The
idea is to find 4 optimal points by forming a quadrilateral,
eliminate the points that lie inside quadrilateral. After that
find another 4 optimal points by triangulation and do the
same.

3.1 Making a Quadrilateral
At first step find four boundary points, such as:
1. Vertically lowest (bottom-most) point
2. Vertically highest (top-most) point
3. Leftmost point
4. Rightmost point
Then using these four points draw a quadrilateral. To become
a convex hull, the nodes inside the quadrilateral boundary
can’t be hull boundary points. So now avoid these points and
remove from the data set to make the algorithm faster.

To eliminate points in quadrilateral first add the point to the
corner of a quadrilateral. In the next step, the areas of triangle
are calculated. If the total summation of areas are not equal to
the quadrilateral area then the point does not belong to the
quadrilateral. Such a quadrilateral is shown in the figure 13.
For the calculation, the following formulas are used:
Step 1: Circumference of the triangle calculation, S = a + b + c ;
where a,b,c the sides of triangle.
Step 2: Area of the triangle = sqrt(S (S - a) (S - b) (S - c)).

IJSER © 2017
http://www.ijser.org

Fig. 1. Forming a quadrilateral.

1411

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017
ISSN 2229-5518

There will be 4 triangles, Assume that triangle areas are area1,
area2, area3, area4 and area of a quadrilateral is R.
Step 3: Determination of position of the point: If the area of
quadrilateral R is not equal to the sum of area1, area2, area3
and area4, then the point is not inside the quadrilateral.

3.2 Triangulation
Triangulation is another optimization method that can be ap-
plied after the previous methods were used. From the previ-
ous quadrilateral finding process, found four edges were
found, within which the desired point could be found. Con-
necting these edges, four triangles can be drawn. Let us con-
sider the top-most and right-most points are two end points in
the quadrilateral. There is a point that is laying at the furthest
part from this line. This point is in the top-right side of the
connecting line of two existing points is the third end point,
which can be connected to form a triangle, as shown in the fig-
ure 3.

Again to find the furthest point calculate the length from the
point to the side of the quadrilateral. Find four triangles in
such way, from the top-right, top-left, bottom-right, bottom-
left regions. The point inside these four triangles can be said
not to lying on hull boundary. Then remove them from con-
sideration.

At the end, eight boundary points and some points on bound-
ary or outside the quadrilateral and triangles. Now apply any
one of the O(nlogn) algorithms for convex hull on rest of the
points which should be very few in number heuristically.

4 RESULT OBTAINED

Here the result shows, higher input size it shows better perfor-
mance. It is because the numbers are generated evenly. So
there are large number of points are eliminated. If the majority
of the points are lying on the quadrilateral or the triangles, this
modification will reduce the complexity of any O(nlogn). Spe-
cially for number of points greater than 10^5 it will show bet-
ter performance.
If Although this solution shows better performance in larger
input but it will show worse performance in input size of 100
or if the majority of points lie on the boundary of a polygon
due to extra checking for point elimination.

5 CONCLUSION

Traditional Graham’s Scan Algorithm is good enough for in-

put size about 100 or 1000 but the concern is huge input like
10^5. In this proposed method, optimization totally depends
on input pattern. If the points are scattered and dense it will
show best performance with time complexity close to O(n)
heuristically.

REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford
Stein 3rd Edition (2010-2011). INTRODUCTION TO ALGORITHM.

IJSER © 2017
http://www.ijser.org

TABLE 1
RESULT OBTAINED AND COMPARISON WITH EXISTING METHOD

Fig. 3. Triangulation.

Fig. 4. Elimination of points within triangle.

Fig. 2. Eliminating Points.

1412

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017
ISSN 2229-5518

December 12, 2012.
[2] Joseph O’Rourke 2ND Editon. COMPUTATIONAL GEOMETRY IN

C. December 17, 2012.
[3] Mary M. McQUEEN and Godfried T. TOUSSAINT, On the ultimate

convex hull algorithm in practice. January 01, 2013.
[4] Graham, R.L. (1972). An Efficient Algorithm for Determining the

Convex Hull of a Finite Planar Set. Information Processing Letters 1,
132-133. January 12, 2013.

[5] McConnell, Jeffrey J. (2006), Computer Graphics: Theory Into Prac-
tice, p. 130, ISBN 0-7637-2250-2, December 22, 2012.

[6] A. Jarvis, On the identification of the convex hull of a finite set of
points in the plane, Information Processing Letters 2 (1973) 18–21.
February 21, 2013.

[7] F. P. Preparata, S. J. Hong, Convex hulls of finite point sets in two
and three dimensions, Communications of the ACM 2 (20) (1977) 87–
93.Febraury 24, 2013.

[8] R. Wenger, Randomized quick hull, Algorithmica 17 (1997) 322–329.
March 02, 2013.

[9] Herv´e Br¨onnimann, John Iacono, Jyrki Katajainen, Pat Morin, Jason
Morrison and Godfried Toussaint. Space-Efficient Planar Convex
Hull Algorithms (2007-08). March 12, 2013.

[10] D. G. Kirkpatrick and R. Seidel. The ultimate planar con vex hull al-
gorithm.SIAM J. Comput., 15(1):287–299, 1986. March 16, 2013.

[11] T. M. Chan. Dynamic planar convex hull operations in near-logarith-
mic amortized time. Journal of the ACM, 48(1):1–12. May 02, 2013.

[12] Gerth Stølting Brodal, Riko Jacob. Dynamic Planar Convex Hull. May
21, 2013.

[13] K. H., R. Tarjan, and T. K. Faster kinetic heaps and their use in broad-
cast scheduling. In Proc. 12th ACM-SIAM Sympo-sium on Discrete
Algorithms, pages 836–844, 2001. April 13, 2013.

[14] A. M. Andrew. Another efficient algorithm for convex hulls in two
dimensions. Information Processing Letters,9(5):216–219, 1979. April
24 2013.

[15] C. Bajaj and M.-S. Kim. Convex Hulls of Objects Bounded by Alge-
braic Curves Algorithmica,Vol. 6, pp. 533{553, 1991. May 18, 2013.

[16] M. do Carmo. Dierential Geometry of Curves and Surfaces.Prentice-
Hall, 1976. April 19, 2013.

[17] D. Dobkin and D. Souvaine. Computational Geometry in a Curved
World.Algorith-mica,Vol. 5, No. 3, pp. 421{457, 1990. June 01, 2013.

[18] D.T. Lee. On Finding the Convex Hull of a Simple Polygon. Int'l J.
Computer and Information Sciences,Vol. 12, No. 2, pp. 87{98, 1983.
May 29, 2013.

[19] E. Sherbrooke and N. Patrikalakis. Computation of The Solutions of
Nonlinear Polyno-mial Systems.Computer AidedGeometric
Design,Vol 10, No 5, pp 379. April 27, 2013.

[20] M. H. Overmars and J. van Leeuwen. Maintenance of con-figurations
in the plane. J. Comput. System Sci., 23(2):166–204, 1981. December
30, 2012.

[21] Yao, A.C. (1981). A lower bound to finding convex hulls. Journal of
the ACM 28, 780-789. February 18, 2013

[22] Bentley, J.L. and M.I. Shamos (1978). Divide and conquer for linear
expected time. Information Processing Letters 7, 87-91. March 10,
2013

[23] http://en.wikipedia.org/convexhull, April 18, 2013
[24] http://www.personal.kent.edu/~rmuhamma/Compgeometry,

April 20, 2013
[25] http://en.wikipedia.org/grahamscan, May 11, 2013
[26] http://www.topcoder.com/tc, June 06, 2013 Control (ICICIC2008),

June 2008.

[27] A sublogarithmic convex hull algorithm. Journal of the Springer, BIT
Numerical Mathematics Volume 30, Issue 3, pp 378–384. September
1990.

[28] https://www.slideshare.net/kasunrangawijeweera/an-efficient-con-
vex-hull-algorith, June 3, 2014.

[29] Gang Mei, John C.Tipper, Nengxiong Xu, An Algorithm for Finding
Convex Hulls of Planar Point Sets. Proceedings of IEEE Conference,
pp.888{891, 29-31 Dec. 2012.

IJSER © 2017
http://www.ijser.org

1413

IJSER

http://www.ijser.org/

	1 Introduction
	2 Literature Servey
	3 Proposed Method
	3.1 Making a Quadrilateral
	3.2 Triangulation

	4 Result Obtained
	5 Conclusion

